Search

Your search for 'dc_creator:( "Folkerts" ) OR dc_contributor:( "Folkerts" )' returned 116 results. Modify search

Sort Results by Relevance | Newest titles first | Oldest titles first

Würfelverdopplung

(1,004 words)

Author(s): Folkerts, Menso
(κύβου διπλασιασμός/ kýbu diplasiasmós nach Eratosthenes, in [1. 88,16]). [English version] I. Allgemein Die W. gehört - neben der Winkeldreiteilung (Winkel- und Kreisteilung) und der Kreisquadratur - zu den drei klass. Problemen der griech. Mathematik. Gefordert ist: Zu einem gegebenen Würfel mit der Seitenlänge a (also dem Volumen a 3) durch ein geom. Verfahren die Seite x eines anderen Würfels zu finden, dessen Volumen doppelt so groß wie der gegebene Würfel ist. Gesucht ist also die Größe x, für die gilt: x 3 = 2 a 3 (d. h.: x = a 32). Die Aufgabe läuft demnach auf eine Kubikwur…

Mathematik

(2,968 words)

Author(s): Folkerts, Menso
Folkerts, Menso [English version] A. Einleitung (RWG) Ausgehend von den mathematischen Leistungen der Ägypter und Babylonier hatten die Griechen die M. zu einem deduktiven System umgebaut, das auf einer Theorie des Beweisens beruhte. Anders als für ihre Vorgänger, war für die Griechen die M. eine um ihrer selbst willen betriebene Wiss., die auch ihre Grundlagen untersuchte; praktische Erwägungen und unmittelbar numerische Probleme traten in den Hintergrund. Die Hauptleistungen der Griechen betrafen die…

Mathematische Wissenschaften

(2,233 words)

Author(s): Menso Folkerts
A. Begriff und antike Grundlagen Unter M. W. werden hier Arithmetik, Geometrie und Algebra verstanden, nicht aber Gebiete der angewandten Mathematik wie Geodäsie und Kartographie. In der Antike umfassten die M. W. das Quadrivium, d. h. Arithmetik, Geometrie, Astronomie und Musiktheorie (Musik). Die Arithmetik behandelte die ganzen Zahlen und deren Beziehungen zueinander, nicht aber das praktische Rechnen. Zentral waren die Teilbarkeit von Zahlen (Primzahlen, vollkommene Zahlen) und die Proportionenle…
Date: 2017-04-01

Kreisquadratur

(1,132 words)

Author(s): Folkerts, Menso
(ὁ τοῦ κύκλου τετραγωνισμός/ ho tu kýklu tetragōnismós, lat. quadratura circuli). [English version] I. Wesen des Problems Die K. gehört zu den drei “klass. Problemen” der Mathematik (die beiden anderen sind die Winkeldreiteilung, vgl. Winkel- und Kreisteilung, und die Würfelverdopplung). Die Aufgabe lautet: Zu einem gegebenen Kreis (= Kr.) mit dem Radius r ist durch ein geom. Verfahren die Seite x eines Quadrats zu finden, das die gleiche Fläche wie der Kr. aufweist. Es wird also die Größe x gesucht, für die gilt: x 2 = π r 2. Die Lösung der K. ist demnach eng mit dem Wesen der Z…

Thymaridas

(153 words)

Author(s): Folkerts, Menso
[English version] (Θυμαρίδας). Mathematiker von Paros, der von Iamblichos (v. P. 104) zu den frühen Pythagoreern (Pythagoreische Schule) gerechnet wird. Er definierte die “Einheit” (μονάς/ monás; d. h. die Eins, die alle natürlichen Zahlen erzeugt) als περαίνουσα ποσότης ( peraínusa posótēs, “begrenzende Quantität”; Iambl. in Nicomachi arithmeticam introductionem 11,2-5) und nannte die Primzahl εὐθυγραμμικός ( euthygrammikós, “geradlinig”; ebd. 27,4), weil sie sich nur eindimensional darstellen läßt. Mit dem Namen “Blume des Th.” (Θυμαρίδειον ἐπάνθημα, Thymarídeion e…

Sporos

(134 words)

Author(s): Folkerts, Menso
[English version] (Σπόρος) oder Poros (Πόρος). Es ist unklar, ob beide Personen, die um 200 n. Chr. lebten, identisch sind (s. [5]). S. bzw. P. verfaßte eine (verlorene) Kompilation Κηρία ( Kēría) mit Auszügen über die Kreisquadratur und Würfelverdopplung [4. 226]. Er kritisierte Archimedes' [1] Approximation der Zahl Pi (so [1. 258,22]), gab einen eigenen Lösungsversuch des Problems der Würfelverdopplung [1. 76-78; 4. 266-268] und lehnte die Quadratrix des Hippias [5] von Elis ab [2. 252-254; 4. 229-230]. In den Aratscholie…

Serenos

(178 words)

Author(s): Folkerts, Menso
[English version] (Σέρηνος). Mathematiker aus Äg. (Antinoupolis), lebte wahrscheinlich im 4. Jh. n. Chr. S. verfaßte zwei (vollständig erh.) Schriften über Kegelschnitte: In Περὶ κυλίνδρου τομῆς ( Perí kylíndru tomḗs, ‘Über den Schnitt eines Zylinders; Ed. [1. 2-117], Übers. [2; 4. 1-64]) beweist er Sätze über die Gleichheit von Zylinder- und Kegelschnitten und über die Projektion des Zylinders in die Ebene. In Περὶ κώνου τομῆς ( Perí kṓnu tomḗs, ‘Über den Schnitt eines Kegels; Ed. [1. 120-303], Übers. [3; 4. 65-167]) werden Sätze und Aufgaben über Schnitte…

Landvermessung

(841 words)

Author(s): Folkerts, Menso
[English version] Die Schriften der röm. Feldmesser (Agrimensoren) behandeln deren verschiedene Wirkungsbereiche: Vermessung von Gebieten; Limitation, d. h. Einteilung durch sich rechtwinklig schneidende Grenzlinien; Anlage von Katastern und Flurkarten; Tätigkeit als Richter oder Sachverständige im Bodenrecht, insbes. bei Grenzstreitigkeiten; Mitwirkung bei rel. Akten; Längen- und Flächenmaße, Gewichte und die Inhaltsbestimmung von Flächen und Körpern. Mit mathematischen Fragen beschäftigen sich v. a. Balbus' Schrift Expositio et ratio omnium formarum (ca. 10…

Winkel- und Kreisteilung

(804 words)

Author(s): Folkerts, Menso
[English version] I. Alter Orient s. Mathematik I. Folkerts, Menso II. Klassische Antike [English version] A. Kreisteilung Die Kreisteilung, d. h. die Teilung des Kreisumfangs in eine beliebige Anzahl gleichlanger Bögen, hängt unmittelbar mit den regelmäßigen Vielecken (Polygonen) zusammen: Wenn in einen Kreis ein regelmäßiges n-Eck einbeschrieben wird, so wird der Kreisumfang in n Abschnitte geteilt, und der zur Seite des n-Ecks gehörende Mittelpunktswinkel hat den Wert 360°/ n . Schon die Pythagoreer (Pythagoras [2]) interessierten sich für die regelmäßigen …

Theudios

(176 words)

Author(s): Folkerts, Menso
[English version] (Θεύδιος). Mathematiker und Philosoph aus Magnesia, wohl 4. Jh. v. Chr. Die einzigen Informationen über ihn stammen aus dem Mathematikerkatalog in Proklos' [2] Euklid-Komm. [1. 67, Z. 12-20]. Dort erscheint er nach Eudoxos [1] und vor Philippos von Medma, der ein Schüler Platons [1] war; Th. war also wohl ein Zeitgenosse des Aristoteles [6]. Nach Proklos betrieb Th. mit Menaichmos [3] und Deinostratos gemeinsame Forsch. an der Akademie ( Akadḗmeia ), brachte die “Elemente” in ein geordnetes System und gab vielen definitionsar…

Mathematical sciences

(2,201 words)

Author(s): Folkerts, Menso (München)
A. Concept and ancient originsThe M. are considered to be arithmetic, geometry and algebra, but not fields of applied mathematics like geodesy or cartography. In Antiquity, they comprised the quadrivium, i.e. arithmetic, geometry, astronomy and music theory. Arithmetic concerned the integers and their relationships,  but not practical calculation. At its heart was the divisibility of integers (prime numbers, perfect numbers) and the theory of proportion. The Greeks knew that there were magnitudes that lacked a common meas…
Date: 2016-11-24

Deinostratus

(385 words)

Author(s): Folkerts, Menso (Munich)
[German version] (Δεινόστρατος; Deinóstratos) D. is mentioned in Eudemus' list of mathematicians as the brother of Menachmus, who was a pupil of Eudoxus (Procl. in primum Euclidis elementorum librum comm., p. 67,11 Friedlein). He therefore lived in the middle of the 4th cent. BC  Pappus of Alexandria reports (4,30, p. 250,33-252,3 Hultsch) that to square the circle D. used a curve that was accordingly called the quadratrix (τετραγωνίζουσα). This curve, said to have already been used by Hippias of Elis for the trisection…

Thymaridas

(162 words)

Author(s): Folkerts, Menso (Munich)
[German version] (Θυμαρίδας; Thymarídas). Mathematician from Paros; according to Iamblichus (v. P. 104), T. was an early Pythagorean (Pythagorean School). He defined 'unity' (μονάς/ monás; i.e. the One that generates all the natural numbers) as περαίνουσα ποσότης ( peraínousa posótēs, 'limiting quantity'; Iambl. in Nicomachi arithmeticam introductionem 11,2-5) and called prime numbers εὐθυγραμμικός ( euthygrammikós, 'rectilinear'; ibid.  27,4), because they can only be set out in one dimension. The name 'Flower of T.' (Θυμαρίδειον ἐπάνθημα, Thymarídeion epánthēma) is gi…

Hypsicles

(603 words)

Author(s): Folkerts, Menso (Munich)
[German version] (Ὑψικλῆς; Hypsiklês). Hellenistic mathematician and astronomer. From the introduction to book 14 of Euclid's ‘Elements’ written by him, it follows that H. lived in Alexandria around 175 BC. It is attested by MSS that he composed what later was added as book 14 to the ‘Elements’ of  Euclides [3] (ed. [1]). Like bk. 13 it deals with the inscribing of regular bodies into a sphere and was thought of as an explanation to a lost work of  Apollonius [13] about dodecahedra and icosahedra. H. shows that the planes th…

Pappus of Alexandria

(727 words)

Author(s): Folkerts, Menso (Munich)
(Πάππος Ἀλεξανδρεύς; Páppos Alexandreús). [German version] I. Life Eminent Greek mathematician. Based on his calculation of a partial solar eclipse for the year AD 320, it is assumed that P. lived in the first half of the 4th cent. (on this and on erroneous dating in the Suda see [2. 2-4]). Folkerts, Menso (Munich) [German version] II. Works The most important surviving work is the Συναγωγή/ Synagōgḗ, customarily cited as the Collectio (ed. [1], French translation [3], edition and English translation of book 7 [2]). Of the 8 books, the first is wholly lost, the se…

Duplication of the Cube

(1,109 words)

Author(s): Folkerts, Menso (Munich)
(κύβου διπλασιασμός/ kýbou diplasiasmós according to Eratosthenes, in [1. 88,16]). [German version] I. General The duplication of the cube ─ besides the  division of angles and circles and the  squaring of the circle ─ belongs to the three classic problems in Greek  mathematics. The challenge is such: to find ─ through the use of geometry ─ for a given cube with a side-length of a (and thus the volume of a 3) the side x of another cube whose volume is twice as big as that of the given cube. The problem is therefore to find the value of x, to which applies: x 3 = 2 a 3 (that is: x = a 32). The problem thus…

Land surveying

(895 words)

Author(s): Folkerts, Menso (Munich)
[English version] The writings of the Roman surveyors ( agrimensores) deal with their various areas of activity: measurement of areas; limitation, i.e. division by orthogonal boundaries; creation of land registers and general parceling maps; functioning as a judges or experts in land law, particularly in boundary disputes; collaboration in religious ceremonies; units of length and area, weights and determining area and volume. Mathematical questions are dealt with most notably by Balbus' work Expositio et ratio omnium formarum (ca . AD 100), the anonymous Liber podismi and a wo…

Rhombus

(103 words)

Author(s): Folkerts, Menso (Munich)
(ῥόμβος/ rhómbos). [German version] [1] Geometric shape In the plane, a rectangle with four sides of equal length but with unequal angles ( i.e., with two acute and two obtuse angles; Euc. 1, Def. 22; Censorinus, DN 83,14 Jahn). In three dimensions, a rhombus is the solid of revolution consisting of two cones with the same base (Archim. De sphaera et cylindro 1, def. 6). Folkerts, Menso (Munich) Bibliography 1 T. L. Heath, The Thirteen Books of Euclid's Elements, vol. 1, 21925, 189 2 A. Hug, s.v. Ῥόμβος ( rhombus), RE 1 A, 1069. [German version] [2] See Top see Top [German version] [3] See Rho…

Neusis

(124 words)

Author(s): Folkerts, Menso (Munich)
[German version] (νεῦσις/ neûsis, ‘inclination’, in the mathematical sense: ‘verging’) is a geometric operation that cannot be performed with a compass and ruler alone. It allows problems  that lead to cubic and other higher equations (for example, cube duplication, angle trisection, squaring the circle) to be solved geometrically. A neûsis construction is necessary when a straight line through a given point is supposed to intersect two given lines so that the distance between the points of intersection is equal to a certain distance. Nicomede…

Quadrature of the circle

(1,369 words)

Author(s): Folkerts, Menso (Munich)
(ὁ τοῦ κύκλου τετραγωνισμός/ ho toû kýklou tetragōnismós, Latin quadratura circuli). [German version] I. The nature of the problem The quadrature of the circle is one of the three 'classic problems' (the other two being the trisection of an angle, cf. division of angles and circles, and the duplication of the cube) of ancient Greek mathematics. The problem is to find the side x of a square such that its area is equal to the area of a circle with radius r using a geometric procedure; that is,  to determine the value of the variable x in the equation x 2 = π r 2. Accordingly, the solution to the q…
▲   Back to top   ▲